R (tz)a(e}, quartet states will arise from (tﬂ}a(e}z where
two tz electrons have opposed spins. These can be worked
out by adding a tg electron to the 5Ty state (t2)%(e)? of d4,
and their IR’s are, therefore, (To x T9) = A1 + E + T + To.
Quartets arising from {1:2)3(@)2 constitute the excited states
in the very sharp bands that appear in the d-d spectra of
octahedral high-spin Mn(II) complexes. The two broader
bands appearing at lower energies in these spectra are
transitions to quartet states arising from (t2)*(e). Their
IR’s can be deduced as T1 + T2 by adding an e electron to
the ®T; state from (t2)* of d*, and taking the DP (E x T).

Other octahedral d" configurations can be treated in the
gsame way: and from the similarity between the O and T
character tables, it should be a straightforward matter for
students and teachers to extend the treatment to tetrahe-
dral systems, mutatis mutandis.
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On Balancing “Redox Challenges”

Oliver G. Ludwig
Villanova University, Villanova PA 19085

A recent paper (1) in this Journal lists three redox equa-
tions which offer a challenge to the conventional techniques
for balancing them. This paper offers a systematic procedure
for handling such equations using nonconventional oxidation
numbers and avoiding a lot of mathematics.

I tell my students in General Chemistry that tools like
Oxidation Numbers (OxNos) are like the scaffolding used
to build a cathedral: once the construction is completed,
how it was done is irrelevant. As long as the fundamental
requirement that the sum of the OxNos is the real charge
on the species, the individual OxNos may be chosen for con-
venience. Stout’s three equations offer beautiful examples
of the benefits of going beyond the conventional. The
“trick” is to put all the burden of OxNo change on just two
atoms, one oxidized and one reduced, irrespective of
whether it makes “chemical sense” or not.

The first reaction is:

HIO3 + Felz + HCl — FeCls + IC1 + H20

Here we assign H, O and Cl their usual OxNos of +1, -2,
and -1, respectively, and take the iodide of the iron com-
pound “out of the game” by giving it the value it has in the
product IC], +1. Then the requirement that the OxNos sum
to the charge on Felg, zero, gives iron the unconventional
OxNo of -2.

This unusual assignment results in having the iron oxi-
dized from -2 to +3, and it is only the iodine of the HIO3
that 1s involved in the redox, being reduced from +5 to +1.
Requiring the total increase in OxNo to be the same as the
total decrease leads to the Fe of 4 Fel2’s going up in OxNo
by 5 and the I of 5 HIOg’s going down by 4. This is the same
stoichiometry given by Stout.

In the second equation,

CuSCN + KIO3 + HCI — CuS0Q4 + KCI + HCN + IC1 + H20

we take sulfur out of the game by assigning the OxNo of
the S in CuSCN to be +6, the value it has in the CuSQO,
product. This requires that Cu have the OxNo of -5 (if we
consider the CN group, unchanged in the redox, to be a
simple group with a —1 charge). The OxNo of Cu thus goes
from —5 to +2 in the CuSOy for a change of +7 and the OxNo
of the I in KIO3 goes from +5 to +1 for a change of —4. We
thus take 4 of the Cu compound and 7 of the iodine com-
pound to give Stout’s stoichiometry.

The third equation given by Stout is a real challenge if
the conventional OxNos for the various atoms are chosen,
but is simple—if arithmetically tedious—if we let the N, H,
C, and O atoms of the reactant have the same OxNos that
they have in the products.

[Cr{N=2H4CO)gls[Cr(CN)glzs +KMnQy4 + HaSO4
— KoCr207 + MnS04 + CO2 + KNO3g + H:0O

Taking the OxNo of N, O, H, and C in the reactant equal
to their (conventional) values in the products, we must as-
sign an OxNo for Cr by requiring that the sum of the
OxNos in the complex compound add to zero. Thus for
Cr7NgsHosC42024 we find an OxNo for Cr of —546/7, a
clearly nonconventional value. The oxidation is of 7 Cr at-
oms going from —546/7 to +6 (= 42/7) in KaCr207 for a total
change of 7 times (42 + 546)/7 (= 588). The reduction of Mn
in MnO4~ is from +7 to +2 in Mn?*, so we need 588/5 Mn
atoms for balance. Multiplying the Mn compound by 588
and the Cr compound by 5 gives coefficients for the equa-
tion which are half of Stout’s; multiplying through by 2 to
give integer coefficients gives the same equation as Stout’s.

Once we get beyond their use in a single species, as with
nomenclature, and involve two or more species, as with re-
actions, the assigning of oxidation numbers really becomes
arbitrary!. They may thus be chosen to make life simpler,
especially when students are taking a “second look” at
OxNos. The present author admits that it may take a bit of
sophistication to see beyond the “common” OxNos, but the
return is an elimination of a lot of algebra irrelevant to the
chemistry of the problem. As a bonus, the technique makes
the pedagogically useful point that OxNos, at least for spe-
cies with more than a single element, are made by chem-
ists forchemists and are not really fundamental to nature.
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For example, in the CN™ ion, we would usually choose “chemically
reasonable” OxNos of +2 and —3 for the C and the N, respectively, but
—4 for C and +3 for N are also chemically reasonable. Only further
information might lead us to prefer one choice over the other. | would
not mark either choice incorrect.

Volume 73 Number6 June 1996 507



